Η περιστροφή δύο ράβδων

 

Οι δύο ομογενείς ράβδοι του σχήματος, μπορούν να στρέφονται γύρω από σταθερούς οριζόντιους άξονες, οι οποίοι περνούν από τα άκρα τους Ο και Ο΄, διαγράφοντας κατακόρυφο επίπεδο. Φέρνουμε τις ράβδους σε οριζόντια θέση και τις αφήνουμε να κινηθούν.

i) Μεγαλύτερη αρχική επιτάχυνση αποκτά:

α) Το άκρο Α της μικρότερης ράβδου.

β) Το άκρο Β της ράβδου με το μεγαλύτερο μήκος.

γ) Τα άκρα Α και Β αποκτούν την ίδια αρχική επιτάχυνση.

ii) Στην κατακόρυφη θέση θα φτάσει πρώτη:

α) Η μικρή ράβδος.

β) Η μακρύτερη ράβδος.

γ) Η ράβδος με την μεγαλύτερη μάζα.

Δίνεται η ροπή αδράνειας μιας ομογενούς ράβδου ως προς κάθετο άξονα ο οποίος διέρχεται από το μέσον της  Ιcm= mℓ2/12.

Απάντηση:

ή

Ένα σώμα Σ μάζας m=1kg ηρεμεί σε λείο κεκλιμένο επίπεδο γωνίας κλίσεως θ=30°, δεμένο στο άκρο ιδανικού ελατηρίου και στο άκρο νήματος, παράλληλου προς το επίπεδο, όπως στο σχήμα. Σε μια στιγμή κόβουμε το νήμα, οπότε το σώμα εκτελεί αατ, με αρχική επιτάχυνση μέτρου |α1|=10m/s2 ενώ ολοκληρώνει πέντε πλήρεις ταλαντώσεις σε χρονικό διάστημα t1=3,14s.

i) Να υπολογιστούν:

 α) το πλάτος της ταλάντωσης του σώματος Σ.

 β) Η τάση Τ1 του νήματος, πριν το κόψουμε.

 γ) Η μέγιστη συσπείρωση του ελατηρίου.

ii) Επαναλαμβάνουμε το πείραμα, αλλά τώρα προσθέτουμε πάνω στο σώμα Σ, ένα δεύτερο σώμα Σ΄ με μάζα επίσης m, το οποίο ισορροπεί.

α) Να υπολογιστεί η τάση του νήματος Τ2.

β) Αν ο συντελεστής οριακής στατικής τριβής μεταξύ των δύο σωμάτων είναι μs=0,8, να εξετάσετε τι πρόκειται να συμβεί, αν κόψουμε το νήμα: Τα δυο σώματα θα ταλαντώνεται μαζί, ή θα υπάρξει ολίσθηση μεταξύ τους.

Δίνεται g=10m/s2, ενώ θεωρούνται γνωστοί οι τριγωνομετρικοί αριθμοί της γωνίας των 30°!!!

Απάντηση:

 ή

αατ- κρούση

Ένα σώμα Σ1 μάζας m1 είναι δεμένο στο άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k=100Ν/m και ταλαντώνεται με εξίσωση x=0,5∙ημ(10t+π/2) (μονάδες στο S.Ι.), με θετική την προς τα δεξιά κατεύθυνση. Ένα δεύτερο σώμα Σ2 μάζας m2=1,5kg κινείται με ταχύτητα υ2 κατά μήκος του άξονα του ελατηρίου, πλησιάζοντας το σώμα Σ1. Αν τη  χρονική στιγμή t0=0 τα δυο σώματα απέχουν απόσταση d1=(π/8+0,5)m, ενώ τα σώματα συγκρούονται κεντρικά και ελαστικά τη χρονική στιγμή t1=π/20 s.

  1. Να υπολογιστεί η μάζα του σώματος Σ1 και η θέση της κρούσης, μεταξύ των δύο σωμάτων.
  2. Να βρεθούν οι ταχύτητες των δύο σωμάτων ελάχιστα πριν την κρούση.
  3. Ποια η μεταβολή της ορμής του σώματος Σ1 που οφείλεται στην κρούση;
  4. Αφού βρείτε τη συνάρτηση x=f(t) για την ταλάντωση του σώματος Σ1 μετά την κρούση, αν αυτή έχει αμελητέα διάρκεια, να γίνει η γραφική παράσταση της απομάκρυνσης του Σ1 σε συνάρτηση με το χρόνο από τη στιγμή t0=0, μέχρι τη στιγμή t= π/4 s.

Απάντηση:

Μαγνητικά πεδία από κυκλικά τμήματα

Στο σχήμα δίνεται ένας οριζόντιος κυκλικός αγωγός ακτίνας r=2cm, ο οποίος διαρρέεται από ρεύμα έντασης Ι=2Α.

  1. Να βρεθεί η ένταση του μαγνητικού πεδίου στο κέντρο Ο του αγωγού.
  2. Το παραπάνω μαγνητικό πεδίο μπορεί να αποδοθεί στα μαγνητικά πεδία που δημιουργούν τα δύο ημικύκλια ΑΜΓ και ΓΝΑ. Να υπολογιστεί η ένταση του πεδίου που δημιουργεί το ημικύκλιο ΑΜΓ.

παραλλαγή

Ένα σώμα Σ μάζας m (αμελητέων διαστάσεων) τοποθετείται στην εσωτερική λεία επιφάνεια, ενός κενού κυλίνδρου, μάζας Μ=2m και ακτίνας R=1m, όπως στο σχήμα, στο άκρο μιας οριζόντιας ακτίνας, ενώ ο κύλινδρος συγκρατείται ακίνητος πάνω σε οριζόντιο επίπεδο. Σε μια στιγμή t=0 αφήνουμε ελεύθερα το σώμα Σ και τον κύλινδρο να κινηθούν. Δίνεται ότι ο κύλινδρος κυλίεται, ενώ τη στιγμή που το σώμα Σ φτάνει στην κατώτερη θέση της τροχιάς του, έχει ταχύτητα μέτρου υ1, ενώ ο άξονας του κυλίνδρου έχει ταχύτητα μέτρου  υcm2.

  1. i) Το οριζόντιο επίπεδο είναι ή όχι λείο;

Αρχεία Ιούνιος 21

ΡΥΘΜΟΣ-ΜΕΤΑΒΟΛΗΣ Πανελλαδικες 2021 τελ. επαναληψη 2.2 2021_06_14_047_themata 2021_06_05_019_themata 2021_06_05_019_lyseis λύση-wisconsin Ελάχιστη-ταχύτητα-υπερπήδησης-σκαλοπατιού 2_protaseis Η αρχής της σχετικότητας Κοινή-χρήση-CamScanner-06-09-2021-21.26 κρούση-κυκλική-κίνηση-οριζόντια-βολή κρούση-κυκλική-κίνηση-οριζόντια-βολή CamScanner-1-2 δελτίο-τύπου

Αρχεία Μάϊος 21

Πολικότητα επαγωγικής τάσης Πολικότητα επαγωγικής τάσης OΛΙKO-A-2021 ΕΝΑ + ΕΝΑ -2021- ΔΔΔ.ΕΚΦΩΝΗΣΕΙΣ -ΑΠΑΝΤΗΣΕΙΣ - Δ. Διαγώνισμα ΠΚ2 - Μάιος 2021 Απαντήσεις-2ου-διαγωνίσματος-επαναληπτικου-2021 χρονική-διάρκεια-και-Ενέργεια-ταλάντωσης

Μεταπασχαλινό.

Ένα σώμα μάζας m=2kg ηρεμεί σε οριζόντιο επίπεδο με το οποίο εμφανίζει συντελεστή τριβής ολίσθησης μ=0,2. Στο σώμα ασκούμε μια οριζόντια μεταβλητή

ζεύγη-σημείων-με-ταχύτητες-ίσου-μέτρου

ζεύγη-σημείων-με-ταχύτητες-ίσου-μέτρου

Αλγεβρικές τιμές

Я-люблю-тебя-россия

ΑΠΑΝΤΗΣΗ-ΡΑΣΣΙΓΙΑ

Πολικότητα επαγωγικής τάσης

Πολικότητα επαγωγικής τάσης

OΛΙKO-A-2021

35.Μηχανικό σύστημα-Ελαστική κρούση